Error Detection and
 Correction

Note

The Hamming distance between two words is the number of differences between corresponding bits.

Example 1

Let us find the Hamming distance between two pairs of words.

1. The Hamming distance $d(000,011)$ is 2 because $000 \oplus 011$ is 011 (two 1s)
2. The Hamming distance $d(10101,11110)$ is 3 because

$10101 \oplus 11110$ is 01011 (three 1s)

Note

The minimum Hamming distance is the smallest Hamming distance between all possible pairs in a set of words.

Example 2

Find the minimum Hamming distance of the coding scheme in Table 1.

Solution
We first find all Hamming distances.

$d(000,011)=2$	$d(000,101)=2$	$d(000,110)=2$	$d(011,101)=2$
$d(011,110)=2$	$d(101,110)=2$		

The $d_{\text {min }}$ in this case is 2.

Example 3

Find the minimum Hamming distance of the coding scheme in Table 2.

Solution
We first find all the Hamming distances.

| $d(00000,01011)=3$ | $d(00000,10101)=3$ | $d(00000,11110)=4$ |
| :--- | :--- | :--- | :--- |
| $d(01011,10101)=4$ | $d(01011,11110)=3$ | $d(10101,11110)=3$ |

The $d_{\text {min }}$ in this case is 3.

To guarantee the detection of up to s errors in all cases, the minimum Hamming distance in a block code must be $d_{\text {min }}=s+1$.

Example 4

The minimum Hamming distance for our first code scheme (Table 1) is 2. This code guarantees detection of only a single error. For example, if the third codeword (101) is sent and one error occurs, the received codeword does not match any valid codeword. If two errors occur, however, the received codeword may match a valid codeword and the errors are not detected.

Example 5

Our second block code scheme (Table 2) has $d_{\text {min }}=3$. This code can detect up to two errors. Again, we see that when any of the valid codewords is sent, two errors create a codeword which is not in the table of valid codewords. The receiver cannot be fooled.

However, some combinations of three errors change a valid codeword to another valid codeword. The receiver accepts the received codeword and the errors are undetected.

Figure 8 Geometric concept for finding $d_{\text {min }}$ in error detection

Legend
Any valid codeword

- Any corrupted codeword with 0 to s errors

Figure 9 Geometric concept for finding $d_{\text {min }}$ in error correction

Note
To guarantee correction of up to t errors in all cases, the minimum Hamming distance in a block code must be $d_{\text {min }}=2 t+1$.

Example 6

A code scheme has a Hamming distance $d_{\text {min }}=4$. What is the error detection and correction capability of this scheme?

Solution

This code guarantees the detection of up to three errors ($s=3$), but it can correct up to one error. In other words, if this code is used for error correction, part of its capability is wasted. Error correction codes need to have an odd minimum distance ($3,5,7, \ldots$).

1-3 LINEAR BLOCK CODES

Almost all block codes used today belong to a subset called linear block codes. A linear block code is a code in which the exclusive OR (addition modulo-2) of two valid codewords creates another valid codeword.

Topics discussed in this section:
Minimum Distance for Linear Block Codes
Some Linear Block Codes

Note

In a linear block code, the exclusive OR (XOR) of any two valid codewords creates another valid codeword.

Example 10

Let us see if the two codes we defined in Table 1 and Table 2 belong to the class of linear block codes.

1. The scheme in Table 1 is a linear block code because the result of XORing any codeword with any other codeword is a valid codeword. For example, the XORing of the second and third codewords creates the fourth one.
2. The scheme in Table 2 is also a linear block code. We can create all four codewords by XORing two other codewords.

Example 11

In our first code (Table 1), the numbers of $1 s$ in the nonzero codewords are 2, 2, and 2. So the minimum Hamming distance is $d_{\text {min }}=2$. In our second code (Table 2), the numbers of 1 s in the nonzero codewords are 3, 3, and 4. So in this code we have $d_{\text {min }}=3$.

Note

A simple parity-check code is a single-bit error-detecting code in which

$$
n=k+1 \text { with } d_{\min }=2 .
$$

Even parity (ensures that a codeword has an even number of 1's) and odd parity (ensures that there are an odd number of 1's in the codeword)

Table 3 Simple parity-check code $C(5,4)$

Datawords	Codewords	Datawords	Codewords
0000	00000	1000	10001
0001	00011	1001	10010
0010	00101	1010	10100
0011	00110	1011	10111
0100	01001	1100	11000
0101	01010	1101	11011
0110	01100	1110	11101
0111	01111	1111	11110

Figure 10 Encoder and decoder for simple parity-check code

Example 12

Let us look at some transmission scenarios. Assume the sender sends the dataword 1011. The codeword created from this dataword is 10111, which is sent to the receiver. We examine five cases:

1. No error occurs; the received codeword is 10111. The syndrome is 0 . The dataword 1011 is created.
2. One single-bit error changes a_{1}. The received codeword is 10011. The syndrome is 1. No dataword is created.
3. One single-bit error changes r_{0}. The received codeword is 101 The syndrome is 1 . No dataword is created.

Example 12 (continued)

4. An error changes r_{0} and a second error changes a_{3}. The received codeword is 001 The syndrome is 0. The dataword 0011 is created at the receiver. Note that here the dataword is wrongly created due to the syndrome value.
5. Three bits- a_{3}, a_{2}, and a_{1}-are changed by errors. The received codeword is 01011. The syndrome is 1 . The dataword is not created. This shows that the simple parity check, guaranteed to detect one single error, can also find any odd number of errors.

Note
A simple parity-check code can detect an odd number of errors.

Note

All Hamming codes discussed in this book have $d_{\text {min }}=3$ (2 bit error detection and single bit error correction).
A codeword consists of n bits of which k are data bits and r are check bits.
Let $m=r$, then we have: $n=2^{m}-1$
and $k=n-m$

Figure 11 Two-dimensional parity-check code

1	1	0	0	1	1	1	1
1	0	1	1	1	0	1	
0	1	1	1	0	0	1	
0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1
Column parities							

a. Design of row and column parities

Figure 11 Two-dimensional parity-check code

b. One error affects two parities

c. Two errors affect two parities

Figure 11 Two-dimensional parity-check code

d. Three errors affect four parities

e. Four errors cannot be detected

Table 4 Hamming code $C(7,4)-n=7, k=4$

Datawords	Codewords	Datawords	Codewords
0000	0000000	1000	1000110
0001	0001101	1001	1001011
0010	0010111	1010	1010001
0011	0011010	1011	1011100
0100	0100011	1100	1100101
0101	0101110	1101	1101000
0110	0110100	1110	1110010
0111	0111001	1111	1111111

Calculating the parity bits at the transmitter :

Modulo 2 arithmetic:

$$
\begin{aligned}
& r_{0}=a_{2}+a_{1}+a_{0} \\
& r_{1}=a_{3}+a_{2}+a_{1} \\
& r_{2}=a_{1}+a_{0}+a_{3}
\end{aligned}
$$

Calculating the syndrome at the receiver:

$$
\begin{aligned}
& \mathrm{s}_{0}=\mathrm{b}_{2}+\mathrm{b}_{1}+\mathrm{b}_{0} \\
& \mathrm{~s}_{1}=\mathrm{b}_{3}+\mathrm{b}_{2}+\mathrm{b}_{1} \\
& \mathrm{~s}_{2}=\mathrm{b}_{1}+\mathrm{b}_{0}+\mathrm{b}_{3}
\end{aligned}
$$

Figure 12 The structure of the encoder and decoder for a Hamming code

Table 5 Logical decision made by the correction logic analyzer

Syndrome	000	001	010	011	100	101	110	111
Error	None	q_{0}	q_{1}	b_{2}	q_{2}	b_{0}	b_{3}	b_{1}

Example 13

Let us trace the path of three datawords from the sender to the destination:

1. The dataword 0100 becomes the codeword 0100011. The codeword 0100011 is received. The syndrome is 000, the final dataword is 0100.
2. The dataword 0111 becomes the codeword 0111001. The received codeword is: 0011001. The syndrome is 011. After flipping b_{2} (changing the 1 to 0), the final dataword is 0111.
3. The dataword 1101 becomes the codeword 1101000. The syndrome is 101. After flipping b_{0}, we get 0000, the wrong dataword. This shows that our code cannot correct two errors.

Example 14

We need a dataword of at least 7 bits. Calculate values of k and \boldsymbol{n} that satisfy this requirement.

Solution

We need to make $k=n-m$ greater than or equal to 7 , or $2 m-1-m \geq 7$.

1. If we set $m=3$, the result is $n=2^{3}-1=7$ and $k=7-3$, or 4 , which is <7.
2. If we set $m=4$, then $n=2^{4}-1=15$ and $k=15-4=$ 11, which satisfies the condition $k>7$. So the code is
$C(15,11)$

Burst Errors

- Burst errors are very common, in particular in wireless environments where a fade will affect a group of bits in transit. The length of the burst is dependent on the duration of the fade.
- One way to counter burst errors, is to break up a transmission into shorter words and create a block (one word per row), then have a parity check per word.
- The words are then sent column by column. When a burst error occurs, it will affect 1 bit in several words as the transmission is read back into the block format and each word is checked individually.

Figure 13 Burst error correction using Hamming code

10-4 CYCLIC CODES

Cyclic codes are special linear block codes with one extra property. In a cyclic code, if a codeword is cyclically shifted (rotated), the result is another codeword.

Topics discussed in this section:

Cyclic Redundancy Check
Hardware Implementation
Polynomials
Cyclic Code Analysis
Advantages of Cyclic Codes
Other Cyclic Codes

Table 6 A CRC code with C(7, 4)

Dataword	Codeword	Dataword	Codeword
0000	0000000	1000	1000101
0001	0001011	1001	1001110
0010	0010110	1010	1010011
0011	0011101	1011	1011000
0100	0100111	1100	1100010
0101	0101100	1101	1101001
0110	0110001	1110	1110100
0111	0111010	1111	1111111

Figure 14 CRC encoder and decoder

Sender
Receiver

Figure 15 Division in CRC encoder

Figure 16 Division in the CRC decoder for two cases

Figure 17 Hardwired design of the divisor in CRC

Figure 18 Simulation of division in CRC encoder

Figure 19 The CRC encoder design using shift registers

Figure 20 General design of encoder and decoder of a CRC code

Note:

The divisor line and XOR are missing if the corresponding bit in the divisor is 0 .

a. Encoder

b. Decoder

Using Polynomials

- We can use a polynomial to represent a binary word.
- Each bit from right to left is mapped onto a power term.
- The rightmost bit represents the " 0 " power term. The bit next to it the " 1 " power term, etc.
- If the bit is of value zero, the power term is deleted from the expression.

Figure 21 A polynomial to represent a binary word

a. Binary pattern and polynomial

b. Short form

Figure 22 CRC division using polynomials

Note
The divisor in a cyclic code is normally called the generator polynomial or simply the generator.

In a cyclic code,

 If $\boldsymbol{s}(\mathrm{x}) \boldsymbol{\neq 0}$, one or more bits is corrupted. If $\boldsymbol{s}(\mathrm{x})=\mathbf{0}$, eithera. No bit is corrupted. or
b. Some bits are corrupted, but the decoder failed to detect them.

Note

In a cyclic code, those $e(x)$ errors that are divisible by $g(x)$ are not caught. Received codeword ($\mathbf{c}(\mathrm{x})+\mathrm{e}(\mathrm{x})) / \mathrm{g}(\mathrm{x})=$ $c(x) / g(x)+e(x) / g x$
The first part is by definition divisible the second part will determine the error. If " 0 " conclusion -> no error occurred.
Note: that could mean that an error went undetected.

Note
If the generator has more than one term and the coefficient of x^{0} is 1 , all single errors can be caught.

Example 15

Which of the following $g(x)$ values guarantees that a single-bit error is caught? For each case, what is the error that cannot be caught?
a. $x+1$
b. x^{3}
c. 1

Solution

a. No x^{i} can be divisible by $x+1$. Any single-bit error can be caught.
b. If i is equal to or greater than $3, x^{i}$ is divisible by $g(x)$. All single-bit errors in positions 1 to 3 are caught.
c. All values of i make x^{i} divisible by $g(x)$. No single-bit error can be caught. This $g(x)$ is useless.

Figure 23 Representation of two isolated single-bit errors using polynomials

If a generator cannot divide $x^{t}+1$
(t between 0 and $\mathrm{n}-1$),
then all isolated double errors can be detected.

Example 16

Find the status of the following generators related to two isolated, single-bit errors.
a. $x+1$
b. $x^{4}+1$
c. $x^{7}+x^{6}+1$
d. $x^{15}+x^{14}+1$

Solution
a. This is a very poor choice for a generator. Any two errors next to each other cannot be detected.
b. This generator cannot detect two errors that are four positions apart.
c. This is a good choice for this purpose.
d. This polynomial cannot divide $x^{t}+1$ if t is less than 32,768. A codeword with two isolated errors up to 32,768 bits apart can be detected by this generator.

Note
A generator that contains a factor of $x+1$ can detect all odd-numbered errors.

All burst errors with $L \leq r$ will be detected.
All burst errors with $L=r+1$ will be detected with probability $1-(1 / 2)^{r-1}$.
\square All burst errors with $L>r+1$ will be detected with probability 1 -(1/2)r.

Example 17

Find the suitability of the following generators in relation to burst errors of different lengths.
a. $x^{6}+1 \quad$ b. $x^{18}+x^{7}+x+1 \quad$ c. $x^{32}+x^{23}+x^{7}+1$

Solution

a. This generator can detect all burst errors with a length less than or equal to $\mathbf{6}$ bits; $\mathbf{3}$ out of 100 burst errors with length 7 will slip by; 16 out of 1000 burst errors of length 8 or more will slip by.

Example 17 (continued)

b. This generator can detect all burst errors with a length less than or equal to 18 bits; 8 out of 1 million burst errors with length 19 will slip by; 4 out of 1 million burst errors of length 20 or more will slip by.
c. This generator can detect all burst errors with a length less than or equal to $\mathbf{3 2}$ bits; 5 out of 10 billion burst errors with length 33 will slip by; 3 out of 10 billion burst errors of length 34 or more will slip by.

Note

A good polynomial generator needs to have the following characteristics:

1. It should have at least two terms.
2. The coefficient of the term x^{0} should be 1.
3. It should not divide $x^{t}+1$, for t between 2 and $\boldsymbol{n}-1$.
4. It should have the factor $x+1$.

Table 7 Standard polynomials

Name	Polynomial	Application
CRC-8	$x^{8}+x^{2}+x+1$	ATM header
CRC-10	$x^{10}+x^{9}+x^{5}+x^{4}+x^{2}+1$	ATM AAL
CRC-16	$x^{16}+x^{12}+x^{5}+1$	HDLC
CRC-32	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+$ $x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$	LANs

10-5 CHECKSUM

The last error detection method we discuss here is called the checksum. The checksum is used in the Internet by several protocols although not at the data link layer. However, we briefly discuss it here to complete our discussion on error checking

Topics discussed in this section:

Idea
One's Complement
Internet Checksum

Example 18

Suppose our data is a list of five 4-bit numbers that we want to send to a destination. In addition to sending these numbers, we send the sum of the numbers. For example, if the set of numbers is $(7,11,12,0,6)$, we send $(7,11,12,0$, 6, 36), where 36 is the sum of the original numbers. The receiver adds the five numbers and compares the result with the sum. If the two are the same, the receiver assumes no error, accepts the five numbers, and discards the sum. Otherwise, there is an error somewhere and the data are not accepted.

Example 19

We can make the job of the receiver easier if we send the negative (complement) of the sum, called the checksum. In this case, we send (7, 11, 12, 0, 6, -36). The receiver can add all the numbers received (including the checksum). If the result is 0 , it assumes no error; otherwise, there is an error.

Example 20

How can we represent the number 21 in one's complement arithmetic using only four bits?

Solution
The number 21 in binary is 10101 (it needs five bits). We can wrap the leftmost bit and add it to the four rightmost bits. We have $(0101+1)=0110$ or 6 .

Example 21

How can we represent the number -6 in one's complement arithmetic using only four bits?

Solution

In one's complement arithmetic, the negative or complement of a number is found by inverting all bits. Positive 6 is 0110; negative 6 is 1001. If we consider only unsigned numbers, this is 9. In other words, the complement of 6 is 9 . Another way to find the complement of a number in one's complement arithmetic is to subtract the number from 2^{n-1} (16-1 in this case).

Example 22

Let us redo Exercise 19 using one's complement arithmetic. Figure 24 shows the process at the sender and at the receiver. The sender initializes the checksum to 0 and adds all data items and the checksum (the checksum is considered as one data item and is shown in color). The result is 36. However, 36 cannot be expressed in 4 bits. The extra two bits are wrapped and added with the sum to create the wrapped sum value 6. In the figure, we have shown the details in binary. The sum is then complemented, resulting in the checksum value 9 (15-6 =9). The sender now sends six data items to the receiver including the checksum 9.

Example 22 (continued)

The receiver follows the same procedure as the sender. It adds all data items (including the checksum); the result is 45. The sum is wrapped and becomes 15. The wrapped sum is complemented and becomes 0 . Since the value of the checksum is 0 , this means that the data is not corrupted. The receiver drops the checksum and keeps the other data items. If the checksum is not zero, the entire packet is dropped.

Figure 24 Example 22

Note

Sender site:

1. The message is divided into 16 -bit words.
2. The value of the checksum word is set to 0 .
3. All words including the checksum are added using one's complement addition.
4. The sum is complemented and becomes the checksum.
5. The checksum is sent with the data.

Receiver site:

1. The message (including checksum) is divided into 16-bit words.
2. All words are added using one's complement addition.
3. The sum is complemented and becomes the new checksum.
4. If the value of checksum is 0 , the message is accepted; otherwise, it is rejected.

Example 23

Let us calculate the checksum for a text of 8 characters ("Forouzan"). The text needs to be divided into 2-byte (16bit) words. We use ASCII (see Appendix A) to change each byte to a 2 -digit hexadecimal number. For example, F is represented as 0×46 and o is represented as 0x6F. Figure 25 shows how the checksum is calculated at the sender and receiver sites. In part a of the figure, the value of partial sum for the first column is 0x36. We keep the rightmost digit (6) and insert the leftmost digit (3) as the carry in the second column. The process is repeated for each column. Note that if there is any corruption, the checksum recalculated by the receiver is not all 0 s. We leave this an exercise.

Figure 25 Example 23

a. Checksum at the sender site

1	0	1	3		Carries
4	6	6	F	(Fo)	
7	2	6	7	(ro)	
7	5	7	A	(uz)	
6	1	6	E		(an)
7	0	3	8	Checksum (received)	
F	F	F	E	Sum (partial)	
8			1		
0	0	0	0	Checksum (new)	

a. Checksum at the receiver site

