
Error Detection 
and 

Correction



The Hamming distance between two 
words is the number of differences 

between corresponding bits.

Note



Let us find the Hamming distance between two pairs of
words.

1. The Hamming distance d(000, 011) is 2 because
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2. The Hamming distance d(10101, 11110) is 3 because



The minimum Hamming distance is the 
smallest Hamming distance between

all possible pairs in a set of words.

Note



Find the minimum Hamming distance of the coding
scheme in Table 1.

Solution
We first find all Hamming distances.
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The dmin in this case is 2.



Find the minimum Hamming distance of the coding
scheme in Table 2.

Solution
We first find all the Hamming distances.

The dmin in this case is 3.
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To guarantee the detection of up to s 
errors in all cases, the minimum

Hamming distance in a block 
code must be dmin = s + 1.

Note



The minimum Hamming distance for our first code
scheme (Table 1) is 2. This code guarantees detection of
only a single error. For example, if the third codeword
(101) is sent and one error occurs, the received codeword
does not match any valid codeword. If two errors occur,
however, the received codeword may match a valid
codeword and the errors are not detected.
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.

Our second block code scheme (Table 2) has dmin = 3. This
code can detect up to two errors. Again, we see that when
any of the valid codewords is sent, two errors create a
codeword which is not in the table of valid codewords. The
receiver cannot be fooled.

However, some combinations of three errors change a
valid codeword to another valid codeword. The receiver
accepts the received codeword and the errors are
undetected.
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Figure 8  Geometric concept for finding dmin in error detection



Figure 9  Geometric concept for finding dmin in error correction



To guarantee correction of up to t errors 
in all cases, the minimum Hamming 

distance in a block code 
must be dmin = 2t + 1.

Note



A code scheme has a Hamming distance dmin = 4. What is
the error detection and correction capability of this
scheme?

Solution
This code guarantees the detection of up to three errors
(s = 3), but it can correct up to one error. In other words,
if this code is used for error correction, part of its capability
is wasted. Error correction codes need to have an odd
minimum distance (3, 5, 7, . . . ).

Example 6



11--3   LINEAR BLOCK CODES3   LINEAR BLOCK CODES

AlmostAlmost allall blockblock codescodes usedused todaytoday belongbelong toto aa subsetsubset
calledcalled linearlinear blockblock codescodes.. AA linearlinear blockblock codecode isis aa codecode
inin whichwhich thethe exclusiveexclusive OROR (addition(addition modulomodulo--22)) ofof twotwo
validvalid codewordscodewords createscreates anotheranother validvalid codewordcodeword..

Minimum Distance for Linear Block Codes
Some Linear Block Codes

Topics discussed in this section:Topics discussed in this section:



In a linear block code, the exclusive OR 
(XOR) of any two valid codewords 
creates another valid codeword.

Note



Let us see if the two codes we defined in Table 1 and Table
2 belong to the class of linear block codes.

1. The scheme in Table 1 is a linear block code
because the result of XORing any codeword with any
other codeword is a valid codeword. For example, the
XORing of the second and third codewords creates the
fourth one.

2. The scheme in Table 2 is also a linear block code.
We can create all four codewords by XORing two
other codewords.
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In our first code (Table 1), the numbers of 1s in the
nonzero codewords are 2, 2, and 2. So the minimum
Hamming distance is dmin = 2. In our second code (Table
2), the numbers of 1s in the nonzero codewords are 3, 3,
and 4. So in this code we have dmin = 3.
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A simple parity-check code is a 
single-bit error-detecting 

code in which 
n = k + 1 with dmin = 2.

Even parity (ensures that a codeword 
has an even number of 1’s) and odd 
parity (ensures that there are an odd 

number of 1’s in the codeword)

Note



Table 3  Simple parity-check code C(5, 4)



Figure 10  Encoder and decoder for simple parity-check code



Let us look at some transmission scenarios. Assume the
sender sends the dataword 1011. The codeword created
from this dataword is 10111, which is sent to the receiver.
We examine five cases:

1. No error occurs; the received codeword is 10111. The
syndrome is 0. The dataword 1011 is created.

2. One single-bit error changes a1 . The received
codeword is 10011. The syndrome is 1. No dataword
is created.

3. One single-bit error changes r0 . The received codeword
is 101 The syndrome is 1. No dataword is created. 
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4. An error changes r0 and a second error changes a3 .
The received codeword is 001 The syndrome is 0.
The dataword 0011 is created at the receiver. Note that
here the dataword is  wrongly created due to the
syndrome value. 

5. Three bits—a3, a2, and a1—are changed by errors.
The received codeword is 01011. The syndrome is 1.
The dataword is not created. This shows that the simple
parity check, guaranteed to detect one single error, can
also find any odd number of errors.

Example 12  (continued)



A simple parity-check code can detect an 
odd number of errors.

Note



All Hamming codes discussed in this 
book have dmin = 3 (2 bit error detection 

and single bit error correction).
A codeword consists of n bits of which k

are data bits and r are check bits. 
Let m = r, then we have: n = 2m -1

and k = n-m

Note



Figure 11  Two-dimensional parity-check code



Figure 11  Two-dimensional parity-check code



Figure 11  Two-dimensional parity-check code



Table 4  Hamming code C(7, 4) - n=7, k = 4



Modulo 2 arithmetic:

r0 = a2 + a1 + a0        

r1 = a3 + a2 + a1

r2 = a1 + a0 + a3

Calculating the parity bits at the transmitter
:

Calculating the syndrome at the receiver:

s0 = b2 + b1 + b0        

s1 = b3 + b2 + b1

s2 = b1 + b0 + b3



Figure 12  The structure of the encoder and decoder for a Hamming code



Table 5  Logical decision made by the correction logic analyzer



Let us trace the path of three datawords from the sender to 
the destination:
1. The dataword 0100 becomes the codeword 0100011.

The codeword 0100011 is received. The syndrome is
000, the final dataword is 0100.

2. The dataword 0111 becomes the codeword 0111001.
The received codeword is: 0011001. The syndrome is 

011. After  flipping b2 (changing the 1 to 0), the final 
dataword is 0111.
3. The dataword 1101 becomes the codeword 1101000.

The syndrome is 101. After flipping b0, we get 0000,
the wrong dataword. This shows that our code cannot
correct two errors.
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We need a dataword of at least 7 bits. Calculate values of k
and n that satisfy this requirement.
Solution
We need to make k = n − m greater than or equal to 7, or  
2m − 1 − m ≥ 7.
1. If we set m = 3, the result is n = 23 − 1=7 and k = 7 − 3,

or 4, which is < 7.
2. If we set m = 4, then n = 24 − 1 = 15 and k = 15 − 4 =

11, which satisfies the condition k>7. So the code is

Example 14

C(15, 11) 



Burst Errors
 Burst errors are very common, in particular in 

wireless environments where a fade will 
affect a group of bits in transit. The length of 
the burst is dependent on the duration of the 
fade.

 One way to counter burst errors, is to break 
up a transmission into shorter words and 
create a block (one word per row), then have 
a parity check per word.

 The words are then sent column by column. 
When a burst error occurs, it will affect 1 bit 
in several words as the transmission is read 
back into the block format and each word is 
checked individually. 



Figure 13  Burst error correction using Hamming code



1010--4   CYCLIC CODES4   CYCLIC CODES

CyclicCyclic codescodes areare specialspecial linearlinear blockblock codescodes withwith oneone
extraextra propertyproperty.. InIn aa cycliccyclic code,code, ifif aa codewordcodeword isis
cyclicallycyclically shiftedshifted (rotated),(rotated), thethe resultresult isis anotheranother
codewordcodeword..

Cyclic Redundancy Check
Hardware Implementation
Polynomials
Cyclic Code Analysis
Advantages of Cyclic Codes
Other Cyclic Codes

Topics discussed in this section:Topics discussed in this section:



Table 6  A CRC code with C(7, 4)



Figure 14  CRC encoder and decoder



Figure 15  Division in CRC encoder



Figure 16  Division in the CRC decoder for two cases



Figure 17  Hardwired design of the divisor in CRC



Figure 18  Simulation of division in CRC encoder



Figure 19  The CRC encoder design using shift registers



Figure 20  General design of encoder and decoder of a CRC code



Using Polynomials

 We can use a polynomial to represent a 
binary word.

 Each bit from right to left is mapped onto a 
power term.

 The rightmost bit represents the “0” power 
term. The bit next to it the “1” power term, 
etc.

 If the bit is of value zero, the power term is 
deleted from the expression.



Figure 21   A polynomial to represent a binary word



Figure 22  CRC division using polynomials



The divisor in a cyclic code is normally 
called the generator polynomial

or simply the generator.

Note



In a cyclic code,
If s(x) ≠ 0, one or more bits is corrupted.
If s(x) = 0, either

a. No bit is corrupted. or
b. Some bits are corrupted, but the

decoder failed to detect them.

Note



In a cyclic code, those e(x) errors that 
are divisible by g(x) are not caught.

Received codeword (c(x) + e(x))/g(x) = 
c(x)/g(x) + e(x)/gx

The first part is by definition divisible the 
second part will determine the error. If 
“0” conclusion -> no error occurred. 

Note: that could mean that an error went 
undetected.

Note



If the generator has more than one term 
and the coefficient of x0 is 1, 

all single errors can be caught.

Note



Which of the following g(x) values guarantees that a 
single-bit error is caught? For each case, what is the error 
that cannot be caught?
a. x + 1 b. x3 c. 1

Solution
a. No xi can be divisible by x + 1. Any single-bit error can

be caught.
b. If i is equal to or greater than 3, xi is divisible by g(x).

All single-bit errors in positions 1 to 3 are caught.
c. All values of i make xi divisible by g(x). No single-bit

error can be caught. This  g(x) is useless.
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Figure 23  Representation of two isolated single-bit errors using polynomials



If a generator cannot divide xt + 1 
(t between 0 and n – 1),

then all isolated double errors 
can be detected.

Note



Find the status of the following generators related to two
isolated, single-bit errors.
a. x + 1 b. x4 + 1 c. x7 + x6 + 1 d. x15 + x14 + 1

Solution
a. This is a very poor choice for a generator. Any two

errors next to each other cannot be detected.
b. This generator cannot detect two errors that are four

positions apart.
c. This is a good choice for this purpose.
d. This polynomial cannot divide xt + 1 if t is less than

32,768. A codeword with two isolated errors up to
32,768 bits apart can be detected by this generator.
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A generator that contains a factor of 
x + 1 can detect all odd-numbered errors.

Note



❏ All burst errors with L ≤ r will be
detected.

❏ All burst errors with L = r + 1 will be
detected with probability 1 – (1/2)r–1.

❏ All burst errors with L > r + 1 will be
detected with probability 1 – (1/2)r.

Note



Find the suitability of the following generators in relation 
to burst errors of different lengths.
a. x6 + 1 b. x18 + x7 + x + 1 c. x32 + x23 + x7 + 1

Solution
a. This generator can detect all burst errors with a length

less than or equal to 6 bits; 3 out of 100 burst errors
with length 7 will slip by; 16 out of 1000 burst errors of
length 8 or more will slip by.
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b. This generator can detect all burst errors with a length
less than or equal to 18 bits; 8 out of 1 million burst
errors with length 19 will slip by; 4 out of 1 million
burst errors of length 20 or more will slip by.

c. This generator can detect all burst errors with a length
less than or equal to 32 bits; 5 out of 10 billion burst
errors with length 33 will slip by; 3 out of 10 billion
burst errors of length 34 or more will slip by.

Example 17 (continued)



A good polynomial generator needs to 
have the following characteristics:
1. It should have at least two terms.
2. The coefficient of the term x0 should

be 1.
3. It should not divide xt + 1, for t

between 2 and n − 1.
4. It should have the factor x + 1.

Note



Table 7  Standard polynomials



1010--5   CHECKSUM5   CHECKSUM

TheThe lastlast errorerror detectiondetection methodmethod wewe discussdiscuss herehere isis
calledcalled thethe checksumchecksum.. TheThe checksumchecksum isis usedused inin thethe
InternetInternet byby severalseveral protocolsprotocols althoughalthough notnot atat thethe datadata
linklink layerlayer.. However,However, wewe brieflybriefly discussdiscuss itit herehere toto
completecomplete ourour discussiondiscussion onon errorerror checkingchecking

Idea
One’s Complement
Internet Checksum
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Suppose our data is a list of five 4-bit numbers that we
want to send to a destination. In addition to sending these
numbers, we send the sum of the numbers. For example, if
the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12, 0,
6, 36), where 36 is the sum of the original numbers. The
receiver adds the five numbers and compares the result
with the sum. If the two are the same, the receiver assumes
no error, accepts the five numbers, and discards the sum.
Otherwise, there is an error somewhere and the data are
not accepted.
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We can make the job of the receiver easier if we send the
negative (complement) of the sum, called the checksum.
In this case, we send (7, 11, 12, 0, 6, −36). The receiver
can add all the numbers received (including the
checksum). If the result is 0, it assumes no error;
otherwise, there is an error.
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How can we represent the number 21 in one’s
complement arithmetic using only four bits?

Solution
The number 21 in binary is 10101 (it needs five bits). We
can wrap the leftmost bit and add it to the four rightmost
bits. We have (0101 + 1) = 0110 or 6.
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How can we represent the number −6 in one’s
complement arithmetic using only four bits?

Solution
In one’s complement arithmetic, the negative or
complement of a number is found by inverting all bits.
Positive 6 is 0110; negative 6 is 1001. If we consider only
unsigned numbers, this is 9. In other words, the
complement of 6 is 9. Another way to find the complement
of a number in one’s complement arithmetic is to subtract
the number from 2n − 1 (16 − 1 in this case).
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Let us redo Exercise 19 using one’s complement
arithmetic. Figure 24 shows the process at the sender and
at the receiver. The sender initializes the checksum to 0
and adds all data items and the checksum (the checksum
is considered as one data item and is shown in color).
The result is 36. However, 36 cannot be expressed in 4
bits. The extra two bits are wrapped and added with the
sum to create the wrapped sum value 6. In the figure, we
have shown the details in binary. The sum is then
complemented, resulting in the checksum value 9 (15 − 6
= 9). The sender now sends six data items to the receiver
including the checksum 9.
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The receiver follows the same procedure as the sender. It
adds all data items (including the checksum); the result is
45. The sum is wrapped and becomes 15. The wrapped
sum is complemented and becomes 0. Since the value of
the checksum is 0, this means that the data is not
corrupted. The receiver drops the checksum and keeps
the other data items. If the checksum is not zero, the
entire packet is dropped.

Example 22 (continued)



Figure 24  Example 22



Sender site:
1. The message is divided into 16-bit words.
2. The value of the checksum word is set to 0.
3. All words including the checksum are

added using one’s complement addition.
4. The sum is complemented and becomes the

checksum.
5. The checksum is sent with the data.

Note



Receiver site:
1. The message (including checksum) is

divided into 16-bit words.
2. All words are added using one’s

complement addition.
3. The sum is complemented and becomes the

new checksum.
4. If the value of checksum is 0, the message

is accepted; otherwise, it is rejected.

Note



Let us calculate the checksum for a text of 8 characters
(“Forouzan”). The text needs to be divided into 2-byte (16-
bit) words. We use ASCII (see Appendix A) to change each
byte to a 2-digit hexadecimal number. For example, F is
represented as 0x46 and o is represented as 0x6F. Figure
25 shows how the checksum is calculated at the sender
and receiver sites. In part a of the figure, the value of
partial sum for the first column is 0x36. We keep the
rightmost digit (6) and insert the leftmost digit (3) as the
carry in the second column. The process is repeated for
each column. Note that if there is any corruption, the
checksum recalculated by the receiver is not all 0s. We
leave this an exercise.
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Figure 25  Example 23


